If you enjoy working with numbers, math, and analyzing complex data...

• Applied Economics
• Astrophysics
• Bioproducts and Biosystems Engineering
• Chemical Engineering
• Computer Engineering
• Computer Science
• Data Science
• Economics
• Electrical Engineering
• Finance
• Materials Science and Engineering
• Mathematics
• Mechanical Engineering
• Statistics

IF YOU ENJOY...

If you enjoy the idea of working in a global environment...

• Biology, Society, and Environment
• Earth Sciences
• Food Science
• Geoengineering
• Geography
• Management Information Systems
• Sustainable Agriculture and Food Systems
• Sustainable Systems Management

If you enjoy communicating, teaching, and connecting with others...

• Agricultural Communication and Marketing
• Agricultural and Food Business Management
• Kinesiology
• Nutrition
• Agricultural Education
• Speech-Language-Hearing Sciences
• Ecology, Evolution and Behavior
• Chemistry
• Biology
• Psychology
• Nursing

If you enjoy interacting with the environment, animals, and the molecules of life...

• Animal Science
• Biochemistry
• Biology
• Cellular and Organismal Physiology
• Chemistry
• Ecology, Evolution and Behavior
• Fisheries, Wildlife and Conservation Biology
• Forest and Natural Resource Management
• Genetics, Cell Biology and Development
• Human Physiology
• Microbiology
• Neuroscience
• Physics
• Plant and Microbial Biology
• Plant Science
• Environmental Engineering
• Environmental Geosciences

If you enjoy being creative and outside-the-box thinking...

• Architecture
• Industrial and Systems Engineering
• Product Design
• Aerospace Engineering and Mechanics
• Civil Engineering
• Landscape Architecture
• Biomedical Engineering

The MAJOR KEY (majors.umn.edu) is a great tool to help you explore these options!
The University of Minnesota has a variety of programs available for students interested in a STEM-related degree. For more information about these majors, please visit the Major Key at majors.umn.edu

Aerospace Engineering and Mechanics (CSE) - Develop and apply your engineering skills to real world problems beyond aircraft and spacecraft alone.

Agricultural Communication and Marketing (CFANS) - Learn to be an expert voice in the food and agriculture industry by exploring the intersection of science and communication.

Agricultural Education (CFANS) - Prepare to teach agriscience, agribusiness, animal science, horticulture, food science, agricultural mechanics, and natural resource science.

Agricultural and Food Business Management (CFANS & CSOM) - Utilize business tactics, economics and applied science to identify, analyze, and solve management issues.

Animal Science (CFANS) - Learn about the care and management of farm animals, zoo animals, horses, pets or business within the animal industry.

Applied Economics (CFANS) - Gain a solid foundation in economics and learn how it is applied in the real world to improve people's lives.

Architecture (CDES) - Practice design, learn fabrication techniques and explore the history of architecture from the studio, workshop and classroom.

Astrophysics (CLA, CSE) - Study the physics of the universe along with interactions between objects in outer space; interpret data with mathematics and physical laws.

Biochemistry (CBS) - Focus on biosynthesis, metabolism, function, and regulation of molecules of life in order to understand disease.

Biology (CBS) - Understand the fundamental nature of living things, and cover the full range of life sciences, from cancer genes to marine mammals.

Biological Engineering (CSE) - Study the fundamentals of biology, chemistry, physics, and mathematics to solve problems in the medical field.

Bioproducts and Biosystems Engineering (CFANS & CSE) - Design products and systems to meet the world's growing needs for materials, energy, and food to address environmental sustainability.

Cellular and Organismal Physiology (CBS) - Study underlying physiological mechanisms in organisms ranging from microorganisms to large animals.

Chemical Engineering (CSE) - Tackle some of the planet's greatest challenges and work on projects that chemically and physically transform matter.

Chemistry (CLA, CSE) - Interact with nature on a fundamental level, studying molecular structure, and the reactions that convert one material into another.

Civil Engineering (CSE) - Build the infrastructure of the world, including roads, bridges, buildings, water supply networks, sewage systems, pollution control facilities, and transportation hubs.

Computer Engineering (CSE) - Create, build, test, and install high-tech computing devices for everything from supercomputers to toys.

Computer Science (CLA, CSE) - Design computer software and hardware, apply computational techniques to other sciences, investigate social uses of computing, determine what programming language to use for a given problem, and advance new technologies such as artificial intelligence and robotics.

Data Science (CSE) - Learn the fundamentals of statistical and algorithmic tools and use those tools to extract meaningful insights from large data sets.

Earth Sciences (CLA, CSE) - Utilize tools from physics, chemistry, biology, chronology and mathematics to better understand how the Earth system works.

Ecology, Evolution and Behavior (CBS) - Build a foundation for success in various paths including graduate study, teaching, and entry-level scientist positions in a wide range of sectors.

Economics (CLA) - Master critical thinking, become an expert in economic principles, and customize your degree with quantitative training.

Electrical Engineering (CSE) - Learn to generate technological advances that impact virtually every aspect of modern life.

Environmental Engineering (CSE) - Prepare to design systems that resolve issues of environmental concern from wastewater treatment to protecting public health.

Environmental Geosciences (CLA, CSE) - Understand natural geologic processes and complete fieldwork to ensure the sustainability of our environment.

Environmental Sciences, Policy and Management (CFANS) - Address complex environmental challenges using science, policy, ethics, management models and communication theory.

Finance (CSOM) - Develop effective financial decision-making, and gain skills to assist in answering how to improve value, evaluate projects, measure risk, and understand markets.

Fisheries, Wildlife and Conservation Biology (CFANS) - Learn to research, plan and implement care and management plans for wildlife, fish, or aquatic resources.

Food Science (CFANS) - Apply chemistry, microbiology, and engineering to the science of making foods.

Forest and Natural Resource Management (CFANS) - Learn from a curriculum that covers the managerial, behavioral, and ecological sciences of our natural resources.

Genetics, Cell Biology and Development (CBS) - Focus on the mechanisms by which genetic information is used by cells to develop into complete organizations.

Geotechnical Engineering (CSE) - Plan, analyze, and design water and waste systems, tunnels, dams, and other facilities on or under the Earth's surface.

Geography (CLA) - Explore the ways both human and non-human forces shape the world, through social, political, economic, and ecological processes.

Human Physiology (CLA) - Concentrate on understanding the functions of the human body from individual cells to organ systems.

Industrial and Systems Engineering (CSE) - Design, plan, and manage large-scale and complex systems including global supply chains, healthcare delivery systems, business and financial services, infrastructures.

Kinesiology (CEHD) - Study physical activity and human movement to prepare for careers in health science, fitness, sport, and wellness.

Landscape Architecture (CDES) - Learn to respond to multiple environmental challenges using sustainable models of landscape design practice.

Management Information Systems (CSOM) - Become proficient in your ability to plan for, design, use, and manage the digital assets of an organization.

Materials Science and Engineering (CSE) - Understand the properties and origins of metals, ceramics, semiconductors, polymers, and composites, used in a wide range of industries.

Mathematics (CLA, CSE) - Go beyond numbers and formulas to understand how and why, and learn to solve complex real-world problems in diverse fields.

Mechanical Engineering (CSE) - Acquire and apply knowledge from and across a variety of disciplines including energy, transportation, medical device design, bioengineering and more.

Microbiology (CBS) - Examine the role of microbes such as bacteria, fungi, and viruses in our world and understand the impact on human health.

Neuroscience (CBS) - Study the building blocks of brain function in both animals and humans, as well as disease causing abnormalities.

Nursing (NURS) - Learn the practices and procedures that ensure the health and safety of patients to prepare for a career in nursing.

Nutrition (CFANS) - Discover how nutrients and foods aid the body in growth and development and in maintaining health and wellness.

Physics (CLA, CSE) - Explore the fundamental properties, laws, and structure of all forms of matter, living and non-living.

Plant and Microbial Biology (CBS) - Work to enhance the nutritional value of crops and their resistance to disease, pests, and drought while working to reduce the need for pesticides, fertilizer, and irrigation.

Plant Science (CFANS) - Prepare for diverse careers in areas such as plant breeding/genetics, sustainable food and plant production, and landscape management.

Product Design (CDES) - Utilize a hands-on, team-based approach to discover methods and tools used to invent the future.

Psychology (CLA) - Apply the scientific method and quantitative reasoning to examine human behavior through environmental and physiological determinants.

Speech-Language-Hearing Sciences (CLA) - Study the production and comprehension of human communication through speech and language.

Statistics (CLA) - Gain a B.A. or B.S. in statistical practice or statistical science to measure and communicate societal advancements.

Sustainable Agriculture and Food Systems (CFANS) - Learn all about the systems that feed the human population, encompassing an interconnected set of biological, technological, economic, and social activities.

Sustainable Systems Management (CFANS) - Advance sustainability through systems solutions that integrate the goals of economic growth, public health, and environmental protection.